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The randomized block design is routinely employed in the social and 
biopharmaceutical sciences. With no missing values, analysis of variance (AOV) can 
be used to analyze such experiments. However, if some data are missing, the AOV 
formulae are no longer applicable, and iterative methods such as restricted maximum 
likelihood (REML) are recommended, assuming block effects are treated as random. 
Despite the well-known advantages of REML, methods like AOV based on complete 
cases (blocks) only (CC-AOV) continue to be used by researchers, particularly in 
situations where routinely only a few missing values are encountered. Reasons for this 
appear to include a natural proclivity for non-iterative, summary-statistic-based 
methods, and a presumption that CC-AOV is only trivially less efficient than REML 
with only a few missing values (say < 10%). The purpose of this note is two-fold. 
First, to caution that CC-AOV can be considerably less powerful than REML even 
with only a few missing values. Second, to offer a summary-statistic-based, pairwise- 
available-case-estimation (PACE) alternative to CC-AOV. PACE, which is identical 
to AOV (and REML) with no missing values, outperforms CC-AOV in terms of 
statistical power. However, it is recommended in lieu of REML only if software to 
implement the latter is unavailable, or the use of a "transparent" formula-based 
approach is deemed necessary. An example using real data is provided for illustration. 

Key words: analysis of variance; linear mixed model; restricted maximum likelihood; 
Satterthwaite approximation. 

1. Introduction 

Randomized block experiments are routinely conducted in the social and 
biopharmaceutical sciences, and it is not uncommon for some data to be missing in 
such studies. To be clear, missing data refer to those values that were planned to be 
made available for analysis but could not be obtained due to factors beyond 
experimental control. For example, the data in Table I (from May and Johnson, 1995) 
are from an experiment in which blood was drawn from 40 subjects (blocks), and each 
sample was divided into four equal parts. Coagulation times were recorded after each 
part was randomly assigned to be treated with one of four experimental drugs. Note 
that 19 of the 40 subjects have at least one missing value; reasons for missingness were 
not provided by the authors. We will assume throughout this paper that missing 
values, such as those in Table I, are missing completely at random, in the sense 
formalized by Little and Rubin (1987, chapter 1). We will also assume that block 
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Table I. Coa~;ulation times for four experimental drubs (TI-T4) 
Subject TI  T2 T3 T4 

1 1.24 2.11 1.19 1.63 
2 1.50 1.67 2.24 
3 1.02 1.18 1.50 1.63 
4 1.48 1.84 1.85 2.07 
5 1.58 1.66 1.42 
6 1.14 1.47 1.78 1.88 
7 1.67 1.99 1.88 2.07 
8 1.06 1.57 
9 1.72 2.08 2.00 
10 1.28 1.72 1.82 1.41 
11 1.42 1.73 1.80 2.25 
12 1.24 1.34 1.39 1.98 
13 1.51 1.58 1.95 
14 1.47 2.11 1.65 
15 1.44 1.71 2.09 
16 1.89 2.42 1.81 2.14 
17 1.30 1.91 1.29 2.02 
18 1.63 1.79 2.12 1.87 
19 1.67 2.14 2.09 2.09 
20 1.36 1.61 1.60 1.82 
21 1.35 2.04 1.61 
22 0.86 1.37 2.02 
23 1.88 1.92 2.00 
24 1.47 1.52 1.97 
25 1.69 1.57 2.08 
26 1.63 1.39 1.78 
27 1.13 1.44 1.27 1.41 
28 1.78 1.65 1.75 
29 1.28 1.72 1.47 1.93 
30 1.22 0.74 1.51 1.35 
31 1.34 1.59 
32 1.43 2.46 2.08 2.24 
33 1.29 1.64 1.69 
34 1.07 1.36 1.37 
35 1.11 1.25 1.45 1.82 
36 1.50 1.38 1.71 
37 1.47 1.79 
38 1.84 1.97 1.88 2.29 
39 1.83 2.35 2.07 1.98 
40 1.58 1.92 1.85 1.61 

Data abstracted from May and Johnson (1995); "." = missing value. 
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effects are random (instead of fixed), implying that responses within a block are 
expected to be correlated, hence requiring the use of a mixed effects model. 

With no missing values, the analysis is straightforward due to the existence of a 
summary-statistic-based approach, namely analysis of variance (AOV). However, if 
some data are missing, the intuitive appeal and simplicity of this traditional approach 
are presumed lost because the usual AOV formulae for inference and estimation are no 
longer applicable. Accordingly, the missing data problem is commonly tackled using 
non-summary-statistic-based methods such as restricted maximum likelihood (REML, 
Patterson and Thompson, 1971; Corbeii and Searle, 1976). These iterative methods 
have gained in popularity because they have attractive theoretical properties, and are 
easily implemented using commercial software packages such as SAS PROC MIXED. 

It is well-known that REML makes excellent use of all the available data by cleverly 
combining interblock and intrablock information to estimate treatment differences 
(e.g., Hocking, 1985, chapter 9). This note was motivated by the authors observation 
that, despite the well-known advantages of REML, methods like AOV based on 
complete cases (blocks) only (CC-AOV) continue to be used by some researchers, 
especially in situations where routinely only a few missing values (if any) are 
encountered, such as in preclinical or phase I clinical trials. Reasons for using CC- 
AOV include a natural proclivity for non-iterative, summary-statistic-based methods, a 
presumption that CC-AOV is only trivially less efficient than REML with only a few 
missing values (say < 10%), and/or lack of  access to software such as SAS PROC 
MIXED. 

The purpose of this note is two-fold. First, to illustrate that REML is much more 
powerful than CC-AOV even with only a few missing values. Second, to offer a 
summary-statistic-based, pairwise-available-case-estimation (PACE) alternative to CC- 
AOV. Section 2 contains a review of the standard analysis with no missing values. In 
Section 3, we describe the summary-statistic-based PACE method, including the test 
statistic for comparing treatments, a derivation of its approximate null distribution, and 
formulae for variance component estimation. Analysis of the data in Table I based on 
CC-AOV, PACE and REML is provided in Section 4. Simulation results comparing 
PACE with CC-AOV and REML are described in Section 5, followed by concluding 
remarks in Section 6. 

2. Standard Analysis With No Missing Values 

The following traditional mixed effects model is assumed: 

Yo =Ix, +~J +eiJ' i<a,j<n, (2.1) 

where y~ is the response for treatment i in block j, I-t, is the population mean for 

treatment i, and l~j and e~ are random block and residual effects, assumed to be 

independently distributed normal variates with zero means and variances ~ and %,  

respectively. r and ~0 are commonly referred to as the interblock and intrablock 

variance components, respectively. Implicit in (2.1) is the following compound 
symmetry covariance assumption: 
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Cov(yo,yu)  = O~ t i ~ k , j = l  

= ~ + %  i = k , j = l  

= 0 j r I .  (2.2) 

From (2.2), it can be inferred that responses between blocks are assumed to be 
uncorrelated, but responses within each block share a common intrablock correlation 

of p - 
~, + Oo 

For now, let us assume that there are no missing values. Throughout this paper, a bar 
indicates a mean and a dot replaces the subscript over which the mean is taken. Let 

d,~t.) and Va denote, respectively, the sample mean and variance of the normalized 

(Yo - Ykj ) pairwise contrast da~)=  ~ , i<k, and let Cik denote the sample covariance 

between observations for treatments / a n d  k. Hence, Vik =(n-l)- '~]( , / ,kc,-L~,) ~ 
J 

and Cik = ( n - 1 ) - ' ~ ( y  U - YiXYkj - Y~.). It is easily seen that under (2.2), Vik and C~k are 
J 

unbiased estimators of ~b 0 and ~ ,  respectively. Hence, an intuitively appealing 

approach for estimating the variance components is to take an average of all the 
pairwise contrast variances, Vik, and all the pairwise covariances Cik, for estimating ~b 0 

and ~b~, respectively. Hocking (1985, chapter 10) made the astute observation that the 

AOV estimators of the variance components, obtained by equating the expected block 
and residual mean squares to their corresponding observed values, are in fact identical 
to the intuitive estimators based on averages of sample variances and covariances. In 
other words, the AOV estimators can be expressed as 

]~(n-/)c,~ 
~ o v  _ ~ (2.3) 

Z (n - 1) 
i<k 

and 

Z (n - 1)V a 
~ AOV i<k 

0 = (2.4) 
Z ( n - 1 )  
i<k 

Even though the (n-l) terms cancel out in (2.3) and (2.4), they have been retained for 
ease of presentation later. 

Next, if 1 0 0 ( 1 - ~ ) %  confidence intervals need to be constructed for an individual 

treatment mean, or for a difference between a pair of means, the following well-known 
formulae are available: 

. . . .  ,2 I ~  ~ + ~ o v  
Yi. "-tl V n (2.5) 

and 
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] ,_.I(a_l){n_,) ~ .  -~ . ( 2 . 6 )  

Above, t~ j~ denotes the 100(1-~ /2)  th percentile of a central t distribution with v 

degrees of freedom. Under (2.2), the degrees of freedom for use in (2.5) are usually 
estimated using a Satterthwaite (1941) approximation, leading to 

f =  ft{l+~.(l+f~)}2 + / ,  , , where f~ = ( a - l ) ,  f2 = ( a - l X n - l )  and )~- ~aov . Note 

the intuitively appealing result that f ---> a(n- 1) as 3. --> 0 ,  and f ---r ( n -  1) as 

~. ---) c o .  Why is this intuitively appealing? To answer this, it is helpful to point out 

that n-Z(~ a~ +~:ov) is mathematically identical to n-'(a-t~Vi], where 
\ / 

v, =(, ,-l)- '•(y o -y,)~ is the observed sample variance for treatment/ with (n-l) 
J 

degrees of freedom. However, under (2.2), the a treatment variances are correlated, 
and it can be shown that the correlation between any two observed variances is 

proportional to pZ. Hence, when p = 0, the a variances effectively contribute (n - 1) 

degrees of freedom each, resulting in f = a(n-l).  Conversely, when p = 1, there is 

effectively only a single independent variance, resulting in f = ( n -  1). In general, 

( n - l ) <  f_<a(n-l). 

Finally, the traditional AOV statistic for testing H 0 : p.~ = P-2 =--. = bt, is 

n E  (y-.._ y-~.)2 
i 

F~Ov = (a - 1) (2.7) 

EZ(Yo-Yi . -Yj+Y. . .~  
i j 

(a - 1)(n - 1) 

Under H0, .~a~ where F(vj,v2) denotes a central F 

distribution with v L and v 2 degrees of freedom. An important observation, one that 

leads us to the natural extension of the AOV statistic for dealing with missing values 
later, is to note that the statistic in (2.7) can be written in the more convenient form 

i<k 

a(a - 1) (2.8) F~.'? v= Z (n_ I)V~ ' 
i<k 

~. ( n  - l )  
i<k 

In AOV parlance, the numerator and denominator in (2.8) represent the average mean 
square and the average variance, respectively, of all normalized pairwise treatment 
contrasts. 
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It should be noted that with no missing values, AOV and REML are mathematically 
identical as long as t~ is not constrained to be non-negative (Hocking, 1985, chapter 

10). In summary, the analysis is straightforward when there are no missing values, 
with formulae (2.3) through (2.8) readily available for hypothesis testing and 
estimation. In the next section, we show how the AOV formulae can be extended in a 
natural way to deal with missing values. 

3. PACE Analysis With Missing Values 

To allow for missing values, additional notation is required. Let n~k denote the 

number of blocks in which there is a response available for both treatments i and k. 
- - p  p 

Also, let d~k~. >, V~k and Ci~ (i < k) denote the analogs of ~k(.), Vik and C~, respectively, 

calculated using pairwise-available-cases only. In other words, the means, variances 
and covariances are obtained separately for each (i,k) treatment pair using only those 
blocks that contain a response for both treatment i and treatment k. Accordingly, if all 
the blocks contain responses for treatments i and k, then 
- - p  - -  p 

and C~ = Cik- dike) = di tc  ) ,  Vi k = Vi ~ e 

Based on the pairwise-available-case-estimation (PACE) approach, a natural extension 
of the AOV method is as follows. First, variance componen! estimates can be obtained 
by using 

E (n,k - l)Ci~ 
_ ( 3 . 1 )  

E (ni~ - 1) 
i<k 

and 

~(n~ -l)Vf 
~pacE _ i<k (3.2) 

0 (n;k - 1) 
i<k 

Note that we are using weighted averages above, with weights (nik - 1) being inversely 

proportional to the sampling variances of V f  and Ci~ in (3.1) and (3.2), respectively, 

conditioned on the observed n~k. 

Next, for confidence intervals related to a single mean or for the difference between 
two means, we replace n under the square root sign in (2.5) and (2.6) with hi,oh ~ and 

ni~, respectively, and use the PACE variance component estimates based on (3.1) and 

(3.2). Here, nj.ob ~ is the number of  observed (i.e., non-missing) responses for 

treatment i. In addition, for the degrees of freedom in (2.5) and (2.6), we replace f~ 

and I"2 in the expression for f given earlier with ~ and f2 given later in (3.7) and 

(3.8), respectively. 
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Finally, the PACE extension of the AOV statistic for testing the overall null hypothesis 
of equal treatment means is 

i<k 

a(a - 1) (3.3) Fc PACE 

.t = E (n,k - l ) V f  
i<k 

E (ni~: -- 1) 
i<k 

Note that the PACE approach is based entirely on intrablock treatment differences, 
and, unlike REML, makes no attempt at recovering interblock information. However, 
it uses information in the incomplete blocks that CC-AOV completely ignores. 

I~ PACE Null Distribution o f .  ~.t 

The PACE statistic in (3.3) is a ratio of two quadratic forms that are independent with 
no missing data, and approximately independent if data are missing completely at 
random. Under Ho, the distributions of these quadratic forms can be approximated as 
follows: 

2 
2 

~ atzT, (3.4) QI = a(a - l) 

and 

(n,k - 1 ) v f  
Q 2 -  i<k a 2 

~(n ik  -1)  zZ~, (3.5) 
i<k 

where Z~v denotes a central chi-square distribution with v degrees of freedom, and 

a,, a 2, ~ and Y2 are constants that can be determined using the Satterthwaite (1941) 

approximation, i.e., by solving the simultaneous equations E(Q,)=a, .~  and 

Var(Q,) = 2a,2f,, for i =  1, 2. Once a, ,a 2, ~ and .f2 are obtained, using Theorem 

6.1 in Box (1954), the null distribution of the PACE statistic can be approximated as 

p P A C E  2. ~ 
" c,, F ( f ~ , f 2 ) .  (3.6) 

~,,,2f2 
Simple algebra (see Appendix) reveals that a ~  = a2y 2 , and that 

.f~ = (3.7) 
a ( a - l )  + e~ n,,ni .:  

2 2m~ ,'k" 

and 
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(,,,, - I) + ~ (n~ - I ) ( , , , . ~ - I )  ' 

,'~ e 2(m/k:~. - 1) 

Above, m k : :  = harmonic mean of n~k and n : : ,  and the set P is given by 

P=~i,i*,k,k*)}{i=i*<k <k*}t..){i<i*=k <k*}u{i<i*<k=k*}}. (3.9) 

For example, when a = 4 ,  the table below illustrates which (i,k) and (i',k*) pairings 

would (, /) ,  or would not (x) be included in P. 

(1,2) 
(1,3) 
(1,4) 

(2,3) 
(2,4) 
(3,4) 

i ',k*) 

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 
x ,/  r / r X 
x x ,/  , /  x J 
x x x x J J 

x x x x r r 
x x x x x ,/  
X X X X X X 

Since a ~  = a2f  2 , it follows from (3.6) that the null distribution of the PACE statistic 

in (3.3)is approximately F(~ , f2 ) ,  where ~ and f2 are given by (3.7) and (3.8), 

respectively. Note that, since the cardinality of P is a(a-1)(a-2)12, when there are no 

missing values, ~ --- f~ = ( a - l )  and Y2 = f2 = ( a - l X n - 1 ) ,  as expected, for in that 

case Fc,~ or is mathematically identical to the AOV statistic in (2.7) and (2.8). 

4. Illustrative Example 

A detailed analysis of the coagulation time data in Table I is provided to help readers 
check their implementation of the PACE method, and to caution against CC-AOV. 

Table II displays the standardized contrast scores and their summary statistics for all 
pairwise contrasts. We have: a=4, nl2=28, nl3=27, n~4=28, n23=31, n24=32, n34=31, 
ml2.13=27.5, m12.14=28.0, m12.23=29.4, m12.24=29.9, m13.14=27.5, rn13,23=28.9, 
m13.34=28.9, m14.24=29.9, m14.34=29.4, m23.24=31.5, m23.34=31.0, and m24.34=31.5. Next, 
for the means, variances, and covariances, we have ~2e(.)=-.224, ~(. ,  =- .191 ,  

~e4c.,=-.336, d2~.)=-.010, d '~( ,=- .120,  d~et.)=-.108, VI2P=.048, Vj~=.023, 

VI~ : . 035 ,  V2~ =.069, V2e4 =.055, 1/34 e =.044, C~e2 =.062,  C~3 =.043, C;~ =.031, 

C2~ = .045, Cu e = .056, and CUe = .035. Hence, (3.1) and (3.2) yield ~'ACL" =.046 

= r;eace = 22.918. Finally, using and -r0~P'tCE .046 , respectively, and using (3.3) gives . c,i 

(3.7) and (3.8), we get ~ = 2.997 and f2 = 85.503. Consequently, the p-value for the 
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Table IL Normalized pairwise contrasts and summary statistics for coat~ulation data 
TI-T2  d - T 1 - T 3  d TI-T4 d - T 2 - T 3  d T2-T4  T3-T4 Subject d,2 = - - - ~  ,, - - - - ~  ,, = - - - ~  2, - - ' ~  ~, = - - ~  d,,= ~/~ 

1 -.615 .035 -.276 .651 .339 -.311 
2 -.120 -.523 -.403 
3 -.113 -.339 -.431 -.226 -.318 -.092 
4 -.255 -.262 -.417 -.007 -.163 -.156 
5 -.057 .113 .170 
6 -.233 -.453 -.523 -.219 -.290 -.071 
7 -.226 -.148 -.283 .078 -.057 -.134 
8 -.361 
9 -.255 -.198 .057 
10 -.311 -.382 -.092 -.071 .219 .290 
11 -.219 -.269 -.587 -.049 -.368 -.318 
12 -.071 -.106 -.523 -.035 -.453 -.417 
13 -.049 -.311 -.262 
14 -.453 -.127 .325 
15 -.191 -.460 -.269 
16 -.375 .057 -.177 .431 .198 -.233 
17 -.431 .007 -.509 .438 -.078 -.516 
18 -.113 -.346 -.170 -.233 -.057 .177 
19 -.332 -.297 -.297 .035 .035 .000 
20 -.177 -.170 -.325 .007 -.148 -.156 
21 -.488 -.184 .304 
22 -.361 -.820 -.460 
23 -.028 -.085 -.057 
24 -.035 -.354 -.318 
25 .085 -.276 -.361 
26 .170 -.106 -.276 
27 -.219 -.099 -.198 .120 .021 -.099 
28 .092 .021 -.071 
29 -.311 -.134 -.460 .177 -.148 -.325 
30 .339 -.205 -.092 -.544 -.431 .113 
31 -.177 
32 -.728 -.460 -.573 .269 .156 -.113 
33 -.247 -.283 -.035 
34 -.205 -.212 -.007 
35 -.099 -.240 -.502 -.141 -.403 -.262 
36 .085 -.148 -.233 
37 -.226 
38 -.092 -.028 -.318 .064 -.226 -.290 
39 -.368 -.170 -.106 .198 .262 .064 
40 -.240 -.191 -.021 .049 .219 .170 
nik 28 27 28 31 32 31 

Mean -.224 -.191 -.336 -.010 -.120 -.108 
Variance .048 .023 .035 .069 .055 .044 
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overall treatment comparison is 5.7x10 -l~ . The p-values for the pairwise comparisons 
are obtained in a similar manner. 

Table III contains an overall summary of the PACE results, along with those for CC- 
AOV and REML, the latter obtained using SAS PROC MIXED (version 6.12, using 
the REPEATED statement with TYPE=CS and the DDFM=SATTERTH option in the 
model statement to estimate denominator degrees of freedom for the fixed effects). 
For these data, the three methods yield generally similar conclusions. The single 
exception is for the Treatment 2 versus Treatment 4 comparison, for which the CC- 
AOV approach (which uses data from only 21 of the 40 subjects!) yields a two-tailed 
p-value of .0895, while the PACE and REML approaches yield highly significant p- 
values of .0023 and .0012, respectively. 

Table IlL Summary of results for coagulation data 
CC-AOV PACE REML 

Interblock (~l) .046 .046 .040 

Intrablock ( ~o ) .046 .046 .046 

Two-tailed p-values 
(numerator d.f., denominator d.f.) 

Overall < .0001 < .0001 < .0001 
(3, 60) (3.0, 85.5 ) (3, 99.2) 

TI vs. T2 < .0001 < .0001 < .0001 
(1, 60) (1, 85.5) (1,99.6) 

TI vs. T3 < .0001 < .0001 < .0001 
(1, 60) (1, 85.5 ) (1 ,100)  

TI vs. T4 < .0001 < .0001 < .0001 
(1, 60) (1, 85.5 ) (1, 99.8) 

T2 vs. T3 .3161 .7867 .8361 
(1, 60) (1, 85.5) (1, 98.7) 

T2 vs. T4 .0895 .0023 .0012 
(1, 60) (1, 85.5) (1, 98.4) 

T3 vs. T4 .0082 .0066 .0024 
(1, 60) (1, 85.5) (1, 98.9) 

5. Simulation Study 

5.1 Description 
The inferential properties of the PACE method were investigated via a simulation 
study designed to mimic conditions typically encountered in trials that motivated this 
research. The following four factors were varied: number of treatments (a=3, 4 and 
5), number of  blocks (n=10, 20 and 30), the percentage of  missing values (5%, 10% 
and 15%), and the interblock variance component (~1=1/9, 1 and 9). For each 

combination of these factors, normally distributed data were generated according to 
model (2.1), with ~0 = 1. Note that values of 1/9, 1 and 9 for ~L correspond to 

intrablock correlations, p = ~t (0t + ~0)-~, of 0.1, 0.5 and 0.9, respectively. 
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The overall treatment comparison, as well as the pairwise comparison of I-t~ to la2, 

were studied. To investigate test size, all treatment means were set equal to zero, and 
to study power, l.t~ and ~t 2 were set equal to 0.3 and 1, respectively, with all other 

mean(s) continuing to be zero. Empirical test sizes and powers for PACE, CC-AOV 
and REML were determined after 10,000 simulations. In each case, the nominal test 
size was 5%. 

5.2 Results 
For brevity, only the results for a = 3 and 5, and p = 0.1 and p = 0.9 are discussed; 

other results were similar, and are available from the author. Empirical test sizes are 
displayed in Table IV. As expected, none of the three methods have inflated test sizes, 
either for the overall comparison or pairwise comparisons. Of note, the test size for 
PACE tends to get smaller with more missing data. 

Table V contains the empirical power results for all methods. Once again, the results 
are as expected, with powercc.AOV < powerpACE < power~ML when there are missing 
values. As the percentage of missing values increases, all methods steadily lose power, 
with the rate of loss being fastest for CC-AOV and slowest for REML. 

Since PACE ignores interblock information, it is expected to have smaller power than 
REML. Note that, with only 5% missing data, the power of REML is slightly bigger 
than that of PACE, but can be substantially bigger than that of CC-AOV! This is one 
of the key messages of this note. For example, with a=5, n=30, 13 = 0.9 and only 5% 

missing data, for the pairwise comparison, the powers for CC-AOV, PACE and REML 
are 65%, 72% and 74%, respectively. When the percentage of missing data is 
increased to 10%, the correspondence power difference between CC-AOV and REML 
is even more pronounced, for both the pairwise comparison (CC-AOV = 53%, REML 
= 71%) as well as the overall comparison (CC-AOV = 80%, REML = 95%). It is clear 
that even when the anticipated percentage of missing data is small (<_ 10%), using CC- 
AOV can result in a substantial loss of power compared with REML. 

Note that as p increases from 0.1 to 0.9, power differences between REML and PACE 

become monotonically smaller. The reason for this is that as p increases, i.e., as ~1 

increases relative to ~0, there is increased uncertainty about whether interblock 

differences represent true treatment differences estimated via incomplete blocks, or 
whether they are merely an artifact of the large interblock variability. Due to increased 
confounding between block and treatment effects, there is a poorer "recovery" of 
interblock information for REML, and, hence, REML comes closer to PACE, with the 
bulk of the weight moving away from the interblock to the intrablock estimates of 
treatment differences. 
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Table IV. Empirical Test Size (nominal 0,=5%) 
3 treatments 

Overall Comparison Pairwise Comparison 
9 N Missin~ CC-AOV PACE REML CC-AOV PACE REML 

0.1 10 5% 5.2 5.1 5.5 5.3 5.5 5.4 
10% 4.7 4.6 5.3 5.0 4.9 5.4 
15% 5.0 4.0 5.4 5.0 4.9 5.4 

20 5% 4.9 4.6 5.1 4.9 4.9 4.9 
10% 5.1 4.8 5.2 5.3 5.4 5.3 
15% 4.8 4.3 4.8 5.0 5.0 4.6 

30 5% 5.1 4.9 5.0 5.1 5.1 5.2 
10% 5.3 4.7 5.2 5.0 5.0 5.1 
15% 5.0 4.2 5.2 5.2 4.8 5.3 

0.9 10 5% 4.9 4.7 5.0 4.9 4.9 4.9 
10% 5.5 5.1 5.4 5.1 4.6 5.0 
15% 5.1 4.5 5.1 5.2 4.7 5.3 

20 5% 5.1 4.8 4.9 5.4 5.2 5.2 
10% 5.0 4.7 5.1 4.8 4.8 5.0 
15% 5.0 4.7 5.3 5.0 5.1 4.9 

30 5% 4.9 4.6 4.8 4.6 4.8 4.8 
10% 5.0 4.5 4.9 5.0 5.1 5.1 
15% 5.2 5.0 5.5 5.2 5.0 5.2 

5 treatments 

0.1 10 5% 4.9 4.5 5.0 5.0 5.0 5.1 
10% 5.1 4.2 5.2 5.0 4.7 4.9 
15% 5.0 4.0 5.2 5.1 5.0 5.3 
15% 5.0 4.0 5.2 5.1 5.0 5.3 

20 5% 5.3 4.8 5.4 5.0 5.3 5.2 
10% 5.1 4.6 5.1 5.2 5.0 5.1 
15% 5.1 4.3 5.2 4.9 5.0 4.7 

30 5% 4.8 4.3 4.8 5.2 5.0 5.1 
10% 5.0 4.4 5.2 4.5 4.8 5.1 
15% 5.1 4.0 5.1 4.7 5.0 5.2 

0.9 10 5% 4.6 4.7 5.0 4.8 4.8 4.8 
10% 4.9 4.4 5.2 4.7 4.7 5.0 
15% 5.0 3.9 5.1 5.1 4.7 4.9 

20 5% 5.3 4.6 4.9 4.9 4.7 4.7 
10% 4.9 4.2 5.0 5.1 4.9 4.9 
15% 5.4 3.9 5.0 5.2 5.1 5.4 

30 5% 5.1 4.7 5.1 5.0 4.8 4.8 
10% 5.2 4.5 5.3 5.0 5.0 5.2 
15% 5.0 3.8 5.0 5.1 4.8 4.8 
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Table V. Empirical Power (%) 
3 treatments 

Overall Comparison Pairwise Comparison 
P N Missin~g CC-AOV PACE REML CC-AOV PACE REML 

0.1 10 5% 38 40 43 27 28 30 
10% 32 36 41 23 25 27 
15% 27 32 39 20 23 27 

20 5% 73 76 78 50 52 55 
10% 64 70 75 44 48 52 
15% 55 65 73 38 44 51 

30 5% 90 92 93 69 71 73 
10% 84 89 92 62 67 71 
15% 76 84 89 54 60 67 

0.9 10 5% 39 41 43 28 29 30 
10% 33 36 39 24 27 28 
15% 27 32 35 19 23 25 

20 5% 72 76 77 50 53 54 
10% 64 71 73 44 49 51 
15% 56 65 69 39 44 48 

30 5% 89 91 92 69 71 72 
10% 84 88 90 61 67 69 
15% 76 85 87 55 62 66 

5 treatmen~ 

0.1 10 5% 39 46 49 26 31 32 
10% 29 41 46 22 29 31 
15% 22 36 44 16 25 28 

20 5% 75 83 85 49 55 57 
10% 60 78 82 37 49 53 
15% 45 72 79 29 45 51 

30 5% 92 96 97 65 72 75 
10% 81 94 96 53 67 72 
15% 66 91 94 42 62 69 

0.9 10 5% 39 47 49 26 30 31 
10% 29 41 45 21 27 29 
15% 21 35 41 16 25 28 

20 5% 75 83 84 48 55 56 
10% 60 79 81 39 50 53 
15% 45 72 77 29 44 49 

30 5% 92 97 97 65 72 74 
10% 80 94 95 53 67 71 
15% 67 91 93 43 62 68 
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6. Concluding Remarks 

This note has focused on the analysis of data from randomized block experiments 
where routinely only a few missing values (if any) are encountered. REML, which 
continues to be increasingly popular for dealing with missing data, is a powerful 
method that makes efficient use of all the available data. However, our experience 
suggests that (unfortunately) some researchers shy away from using REML because 
they view it as a "black-box" approach that lacks the simplicity and intuitive appeal of 
a summary-statistic-based approach like AOV. Accordingly, a natural extension of the 
traditional AOV method has been proposed to deal with the design imbalance caused 
by missing values. The proposed method (PACE) is a significant improvement over 
the nai've (but not uncommon) CC-AOV approach. Moreover, when only a few data 
are missing (5%), PACE is almost as powerful as REML, but with many missing 
values REML is significantly more powerful. 

In conclusion, our recommendation is to stay away from CC-AOV and adopt REML as 
the method of choice even when routinely only a few missing values are expected. 
PACE could be used an alternative to REML, but only if software to implement the 
latter is unavailable, or the use of a "transparent" formula-based approach is deemed 
necessary. 

APPENDIX 

We need to solve E(Q~) = a , f  and Var(Q,) = 2a,~s~, for i = 1,2, where 01 and 02 are 

defined in (3.4) and (3.5), respectively. First, note that: 

~o i = i ' < k < k *  Cov(dik~j), di'k'C) )) = "-~ 

_ -~o i<i* = k < k *  
2 

_ Oo i < i * < k = k * .  
2 

Next, the following results are easily established under the null hypothesis of equal 
means: 

- -P  2 
n'k(d~kc>) Z~ and ( n ~ - l ) V f  2 

" )~ t l ,k  -- I  " 
~o ~o 

From this, it follows that: 

- e  2 ~o -p  2 2 ~  E[(d,~c)) ] = ~  and Var[(dikc.)) ]=  2 , 
nik l~ik 

and 

2(P2o E[V~ ] = ~0 and Var[Vik ] - 
- -1 '  nik 

and, hence, that e t Q , ]  = a , i ,  = ~LQ21 = a2~r2 = *o. 

-p  2 (~p )21 and The only results that remain to be determined are C~162 ) " ,'cc.)-" 

Cov(Vf,  V.ek .). Suppose there were no missing values, i.e., nik=n, for all i<k. Let 
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d,k,,,,) = (d tko) ,  dike2),..., 
comparing treatment i to treatment k. 

quadratic forms in dJk- Specifically, 

d~r = tt,~ (-~-2 J,, J,r ~ik and 

denote the 1 x n vector of normalized contrast scores 
--2 Note that dike) and Vik can be written as 

where j,, is an n x 1 vector of ones and I, is the identity matrix of order n. Hence, 

using a well-known result on the covariance between two quadratic forms in normal 
variates (Searle, 1971, pg. 66), it is quickly established that, with no missing values, 

C v . . 2  . o ta~k~.~,ai.~.c.)) =~-n2 and Cov(Vtk 'V'k ' )--  2 ( n - l )  

The above covariances are as shown provided the subscripts belong to the set P given 
by (3.9); otherwise the covariances are zero. With missing values, there are no closed- 
form expressions for the above covariances. In light of the missing completely at 
random (MCAR) assumption, the following approximations are used: 

-p  2 ~ 'p  ~21 = ~2~ and Cov(V,k,e V.k.e ) = ~2o , 
C~ ' - i'k'~.)- , - 2m~.i.k. 2(mike. k. -- 1) 

where m k~. ~. = harmonic mean of n,k and n. k. ; the arithmetic mean is not used because 

its use does not guarantee .~ < (a -1 ) .  

The final expressions for ~ and .f2 in (3.7) and (3.8), respectively, are now easily 

obtained using the intermediary results described above. 
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